

COMISSIÓ GESTORA DE LES PROVES D'ACCÉS A LA UNIVERSITAT

COMISIÓN GESTORA DE LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD

PROVES D'ACCÉS A LA UNIVERSITAT

PRUEBAS DE ACCESO A LA UNIVERSIDAD

CONVOCATÒRIA: 2015	CONVOCATORIA:2015
FÍSICA	FÍSICA

BAREMO DEL EXAMEN: La puntuación máxima de cada problema es de 2 puntos y la de cada cuestión de 1,5 puntos. Cada estudiante podrá disponer de una calculadora científica no programable y no gráfica. Se prohíbe su utilización indebida (almacenamiento de información). Se utilice o no la calculadora, los resultados deberán estar siempre debidamente justificados. Realiza primero el cálculo simbólico y después obtén el resultado numérico.

OPCIÓN A

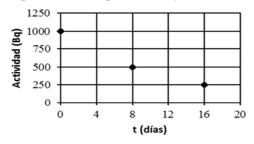
BLOQUE I – CUESTIÓN

Calcula a qué distancia desde la superficie terrestre se debe situar un satélite artificial para que describa órbitas circulares con un periodo de una semana. Datos: $G = 6,67 \cdot 10^{-11} \, Nm^2 kg^{-2}$; $M_{Tierra} = 5,97 \cdot 10^{24} \, kg$; $R_{Tierra} = 6370 \, km$

BLOOUE II – PROBLEMA

Un altavoz produce una onda armónica que se propaga por el aire y que está descrita por la expresión $s(x,t) = 20 sen(6200t - 18x)\mu m$, con t en segundos y x en metros. a) Determina la amplitud, la frecuencia, la longitud de onda y la velocidad de propagación de la onda. (1 punto). b) Calcula el desplazamiento, s, y la velocidad de oscilación de una partícula del medio, que se encuentra en x = 20 cm en el instante t = 1 ms. (1 punto)

BLOQUE III - CUESTIÓN


Un objeto real se sitúa frente a un espejo cóncavo, a una distancia menor que la mitad de su radio de curvatura. ¿Qué características tiene la imagen que se forma? Justifica la respuesta mediante un esquema de trazado de rayos.

BLOQUE IV - CUESTIÓN

Por un conductor rectilíneo de longitud muy grande, situado sobre el eje Y, circula una corriente eléctrica uniforme de intensidad I=2 A, en el sentido positivo de dicho eje. En el punto (1,0) m se encuentra una carga eléctrica positiva q=2 μ C cuya velocidad es $\vec{v}=3\cdot 10^6$ $\vec{\iota}$ m/s. Calcula la fuerza magnética que actúa sobre la carga y dibuja los vectores velocidad, campo magnético y fuerza magnética, en el punto donde se encuentra situada la carga. Dato: permeabilidad magnética del vacío, $\mu_0=4\pi\cdot 10^{-7}$ $T\cdot m/A$

BLOOUE V – CUESTIÓN

Se mide la actividad de una pequeña muestra radiactiva. Los resultados se representan en la figura. Determina cual es el isótopo radiactivo que constituye la muestra teniendo en cuenta la tabla proporcionada.

Isótopos radiactivos	Periodo de semidesintegración
32 ₁₅ P	14,3 días
⁴² ₁₉ K	12360 h
⁴⁷ ₂₀ Ca	108,8 h
¹³¹ ₅₃ I	691200 s
$^{82}_{35}Br$	131750 s
¹⁴⁷ ₆₀ Nd	11 días

BLOQUE VI – PROBLEMA

En las partes altas de la atmósfera, y debido a los rayos cósmicos, se producen unas partículas elementales denominadas muones que se mueven a velocidades relativistas hacia la superficie de la Tierra. Un muón desciende verticalmente con una velocidad v=0.9c. a) Calcula la energía en reposo y la energía total del muón en MeV. (1 punto) b) El muón se ha producido a una altura de $10 \ km$. Calcula el intervalo de tiempo que tarda el muón en alcanzar la superficie, según un sistema de referencia ligado a la Tierra, y según un sistema de referencia que viaje con el muón. (1 punto)

Datos: velocidad de la luz en el vacío, $c=3\cdot 10^8\,m/s$, masa (en reposo) del muón: $m=1.88\cdot 10^{-28}\,kg$, carga elemental, $e=1.6\cdot 10^{-19}\,C$

COMISSIÓ GESTORA DE LES PROVES D'ACCÉS A LA UNIVERSITAT

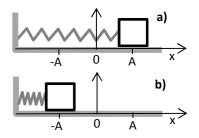
COMISIÓN GESTORA DE LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD

PROVES D'ACCÉS A LA UNIVERSITAT

PRUEBAS DE ACCESO A LA UNIVERSIDAD

CONVOCATÒRIA: 2015	CONVOCATORIA:2015
FÍSICA	FÍSICA

BAREMO DEL EXAMEN: La puntuación máxima de cada problema es de 2 puntos y la de cada cuestión de 1,5 puntos. Cada estudiante podrá disponer de una calculadora científica no programable y no gráfica. Se prohíbe su utilización indebida (almacenamiento de información). Se utilice o no la calculadora, los resultados deberán estar siempre debidamente justificados. Realiza primero el cálculo simbólico y después obtén el resultado numérico.


OPCIÓN B

BLOQUE I – PROBLEMA

Un planeta tiene la misma densidad que la Tierra y un radio doble que el de ésta. Ambos planetas se consideran esféricos. a) Si una nave aterriza en dicho planeta, ¿cuál será su peso en comparación con el que la nave tiene en la Tierra? (1 punto). b) Obtén la velocidad de escape en dicho planeta, si la velocidad de escape terrestre es de 11,2 km/s. (1 punto)

BLOQUE II – CUESTIÓN

Un bloque apoyado sobre una mesa sin rozamiento y sujeto a un muelle oscila entre las posiciones a) y b) de la figura. El tiempo que tarda en desplazarse entre a) y b) es de 2 s. Si en t = 0 s el bloque se encuentra en la posición a), representa la gráfica de la posición en función del tiempo, x(t). Señala en dicha gráfica la amplitud, A, y el periodo del movimiento. Indica razonadamente sobre la gráfica el punto correspondiente a la posición del bloque cuando ha trascurrido un tiempo t=1,5periodos.

BLOQUE III – CUESTIÓN

En la fotografía de la derecha, un haz laser que se propaga por el aire incide sobre la cara plana de un medio cuyo índice de refracción es n. Determina n y la velocidad de la luz en ese medio utilizando la información de la fotografía.

Dato: velocidad de la luz en el aire, $c = 3 \cdot 10^8 m/s$

BLOQUE IV - PROBLEMA

Una carga puntual de valor $q_1 = -3 \,\mu C$ se encuentra en el punto $(0,0) \, m$ y una segunda carga de valor desconocido, q_2 se encuentra en el punto (2,0) m. a) Calcula el valor que debe tener la carga q_2 para que el campo eléctrico generado por ambas cargas en el punto (5,0) m sea nulo. Representa los vectores campo eléctrico generados por cada una de las cargas en ese punto. (1 punto). b) Calcula el trabajo necesario para mover una carga $q_3 = 0.1 \,\mu$ C desde el punto (5,0) *m* hasta el punto (10,0) *m*. (1 punto) Dato: constante de Coulomb, $k_e = 9 \cdot 10^9 Nm^2/C^2$

BLOQUE V – CUESTIÓN

Determina la energía de enlace por nucleón (en MeV) para el núcleo de ³₁H y para una partícula alfa. ¿Cuál de los dos núcleos será más estable?

Datos: masa del protón, $m_p=1,007276\,u$; masa del neutrón, $m_n=1,008665\,u$; masa de la partícula alfa, $m_\alpha=1,008665\,u$; masa de la partícula alfa, $m_\alpha=$ 4,001505 *u*; masa del núcleo de ${}_{1}^{3}H$, $m({}_{1}^{3}H) = 5,0081 \cdot 10^{-27} \, kg$; $1 \, u = 1,6605 \cdot 10^{-27} \, kg$; carga elemental, $e = 1,602 \cdot 10^{-19}$ C; velocidad de la luz en el vacío, $c = 3 \cdot 10^8$ m/s

BLOOUE VI – CUESTIÓN

Completa razonadamente la siguiente cadena de desintegración radiactiva. $^{232}_{90}Th \longrightarrow ^{228}_{88}Rd + ^{a}_{b}X$ Identifica X y obtén los valores a, b, c y d.

$$^{232}_{90}Th \longrightarrow ^{228}_{88}Rd + ^{a}_{b}X$$

$$\qquad \qquad \downarrow \qquad \qquad ^{c}_{-1}Ac + ^{0}_{-1}e$$