- 1 (*Castilla-León 2003*).- Cuando se adiciona un catalizador a un sistema reaccionante, contesta razonadamente si son ciertas o falsas las siguientes propuestas, corrigiendo las falsas:
- a) La variación de entalpía de la reacción se hace más negativa, es decir, la reacción se hace más exotérmica y por lo tanto es más rápida.
- b) La variación de la energía libre de Gibbs se hace más negativa y en consecuencia aumenta la velocidad.
- c) Hace disminuir la energía de activación del proceso y así aumenta la velocidad del mismo.
- 2 (Andalucía 2001).- Para una reacción hipotética $A+B\to C$, en unas condiciones determinadas, la energía de activación de la reacción directa es 31 kJ, mientras que la de la reacción inversa es 42 kJ.
- a) Representa, en un diagrama energético, las energías de activación de las reacciones directa e inversa.
- b) La reacción directa, ¿es exotérmica o endotérmica? Razona la respuesta.
- c) Indica cómo influirá en la velocidad de reacción la utilización de un catalizador.
- 3 (Castilla-León 2006).- Indica, razonando la respuesta en cada caso, si las siguientes afirmaciones son ciertas o falsas:
- a) La entalpía estándar de formación del Hg (s) es cero.
- b) Todas las reacciones químicas en las que $\Delta G < 0$ son muy rápidas.
- c) La absorción de calor por parte de un sistema contribuye al aumento de su energía interna.
- 4 (*Castilla-León 2006*).- Explica razonadamente la influencia existente entre la velocidad de reacción y los factores siguientes:
- a) Presencia de catalizadores.
- b) Variación de la concentración de reactivos.
- c) Variación de la temperatura.
- 5 (*Madrid 2006*).- La reacción en fase gaseosa $2A + B \rightarrow 3C$ es una reacción elemental y, por lo tanto, de orden 2 respecto de A y de orden 1 respecto de B.
- a) Formula la expresión para la ecuación de velocidad.
- b) Indica las unidades de la velocidad de reacción y de la constante cinética.
- c) Justifica cómo afecta a la velocidad de reacción un aumento de la temperatura a volumen constante.
- d) Justifica cómo afecta a la velocidad de reacción un aumento del volumen a temperatura constante.
- 6.- Para una reacción del tipo $A + B \rightarrow productos$, la ecuación de velocidad es $v = k [A]^2 \cdot [B]$. Si $k = 2.5 \cdot 10^{-6} (mol/L) \cdot s^{-1}$, completa la siguiente tabla:

Experiencia	[A] (mol/L)	[B] (mol/L)	v _{reacción} [(mol/L)·s ⁻¹]
1	0'500		6'25·10 ⁻⁶
2	0'500	0'500	
3		0'250	2'50·10 ⁻⁶